2.1.2 Einführungsphase – Unterrichtsvorhaben I

Kontext: Vom Erdgas zum Aromastoff

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht

Schwerpunkte übergeordneter Kompetenzerwartungen:

Kompetenzbereich Umgang mit Fachwissen:

• UF 1-4

Kompetenzbereich Erkenntnisgewinnung:

• E-2, 4-6

Kompetenzbereich Kommunikation:

K1-3

Kompetenzbereich Bewertung:

• B1-2

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltlicher Schwerpunkte:

- Ordnung schaffen: Einteilung organischer Verbindungen in Stoffklassen
- Wenn Wein umkippt: Oxidation von Alkoholen
- Alkohol im menschlichen Körper
- Alkanale, Alkanone und Carbonsäuren Oxidationsprodukte der Alkanole
- Alkohol im menschlichen Körper
- Stoffklasse der Ester
- Chem. Gleichgewicht
- Zusammenfassung:
 - Eigenschaften, Strukturen und Verwendungen organischer Stoffe
- Herstellung eines Parfums (fakultativ)

Zeitbedarf: ca. 52 Std. à 45 Minuten

Klausur: 2x45 Minuten (inhaltliche Schwerpunkte wählbar aus UV I und UV II – in Abhängigkeit des Unterrichtsverlauf bis zum festgesetzten Klausurtermin)

Unterrichtsvorhaben I

Kontext: Vom Erdgas zum Aromastoff Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen Inhaltliche Schwerpunkte: Schwerpunkte übergeordneter Kompetenzerwartungen: Stoffklassen (Alkane, Alkohole, Aldehyde/Ketone, Carbonsäuren und Ester) UF1 Wiedergabe Chemisches Gleichgewicht UF2 Auswahl UF3 Systematisierung Reaktionsgeschwindigkeit UF4 Vernetzung E2 Wahrnehmung und Messung E4 Untersuchungen und Experimente E5 Auswertung Zeitbedarf: 52 Std. à 45 Minuten E6 Modelle K1 Dokumentation K2 Recherche K3 Präsentation B1 Kriterien B2 Entscheidungen Basiskonzept (Schwerpunkt): Basiskonzept Struktur - Eigenschaft Basiskonzept Chemisches Gleichgewicht Konkretisierte Kompetenzerwartungen des Lehrmittel/ Materialien/ Methoden Verbindliche Absprachen Sequenzierung inhaltlicher **Aspekte** Didaktisch-methodische Kernlehrplans Anmerkungen Die Schülerinnen und Schüler Ordnung schaffen: Einteilung Diagnose: Begriffe, die aus Test zur Eingangsdiagnose organischer Verbindungen in S I bekannt sein müssten: funktionelle Gruppen. Stoffklassen Hvdroxvlaruppe. intermolekulare WW, Alkane und Alkohole Redoxreaktionen. nutzen bekannte Atom- und Bindungsmodelle zur Schülerexperiment Löslichkeit und Moleküle Beschreibung organischer Löslichkeiten verschiedener Alkohole in Alkanen und Wasser. Elektronendonator/und Siedetemperaturen Kohlenstoffmodifikationen (E6). akzeptor, EN, Säure, saure • funktionelle Gruppe Lösung benennen ausgewählte organische Verbindungen mithilfe Gruppenarbeit intermolekulare der Regeln der systematischen Nomenklatur (IUPAC) Darstellung von Isomeren mit Molekülbaukasten Ggf. Wiederholung: EN, Wechselwirkungen: van-derpolare Bindung, Dipol, H-(UF3). Waals Ww. und Schülerübungsphase (zB. Arbeitsblätter) Brücken, Van-der-Waals-Wasserstoffbrücken ordnen organische Verbindungen aufgrund ihrer Nomenklaturregeln mit Anwendung ww homologe Reihe und funktionellen Gruppen in Stoffklassen ein (UF3). Intermolekulare Wechselwirkungen physikalische Eigenschaften Formelschreibweisen **Fakultativ** Nomenklatur nach IUPAC erklären an Verbindungen aus den Stoffklassen der Fächerübergreifend

Schülerversuch

Alkane und Alkene das C-C-Verknüpfungsprinzip (UF2).

Formelschreibweise: Verhältnis- , Summen-, Strukturformel	beschreiben den Aufbau einer homologen Reihe und die Strukturisomerie (Gerüstisomerie und Positionsisomerie) am Beispiel der Alkane und Alkohole.(UF1, UF3)	Wasserdampfdestillation von Limonen aus Zitronenschale (Fakultativ: Soxhlet-Extraktion)	(Biologie): Lipid-Bilayer- Membran
Wenn Wein umkippt: Oxidation von Alkoholen Oxidation von Ethanol Aufstellung des Redoxschemas unter Verwendung von Oxidationszahlen Regeln zum Aufstellen von Redoxschemata	erklären die Oxidationsreihen der Alkohole auf molekularer Ebene und ordnen den Atomen Oxidationszahlen zu (UF2). beschreiben Beobachtungen von Experimenten zu Oxidationsreihen der Alkohole und interpretieren diese unter dem Aspekt des Donator-Akzeptor-Prinzips (E2, E6). erläutern ausgewählte Eigenschaften organischer Verbindungen mit Wechselwirkungen zwischen den Molekülen (u.a. Wasserstoffbrücken, van-der-Waals-Kräfte) (UF1, UF3).	Demonstration von zwei Flaschen Wein, eine davon ist bereits seit 2 Wochen geöffnet. Schülerexperiment pH-Wertbestimmung, Geruch, Farbe der beiden Weine Arbeitsblatt Oxidationszahlen	Wiederholung: Redoxreaktionen
Alkohol im menschlichen Körper Ethanal als Zwischenprodukt der Oxidation Nachweis der Alkanale Biologische Wirkungen des Alkohols Berechnung des Blutalkoholgehaltes	dokumentieren Experimente in angemessener Fachsprache (z.B.: Fehling, Tollens) (K1)	Concept-Map zum Arbeitsblatt "Wirkung von Alkohol", Schülerversuche Fehling-, Tollens-Probe	Fakultativ: Alkotest mit dem Drägerröhrchen Film zum historischen Alkoholtest Niveaudifferenzierte Aufgabe zum Redoxschema der Alkoholtestreaktion
Alkanale, Alkanone und Carbonsäuren – Oxidationsprodukte der Alkanole Oxidation von Propanol Unterscheidung primärer, sekundärer und tertiärer Alkanole durch ihre Oxidierbarkeit Gerüst- und Positionsisomerie am Bsp. der Propanole Molekülmodelle Homologe Reihen der Alkanale, Alkanone und Carbonsäuren Nomenklatur der Stoffklassen und funktionellen Gruppen	beschreiben und visualisieren anhand geeigneter Anschauungsmodelle die Strukturen organischer Verbindungen (K3). wählen bei der Darstellung chemischer Sachverhalte die jeweils angemessene Formelschreibweise aus (Verhältnisformel, Summenformel, Strukturformel) (K3). beschreiben den Aufbau einer homologen Reihe und die Strukturisomerie (Gerüstisomerie und Positionsisomerie) am Beispiel von Alkoholen (UF1, UF3)	Schülerversuche zur Oxidation von Alkoholen Zum Beispiel: Oxidation von Propanol mit Kupferoxid Oxidationsfähigkeit von 1°-, 2° und 3°-Alkoholen, z.B. mit KMnO ₄ Gruppenarbeit Darstellung von Isomeren mit Molekülbaukasten Lernzirkel Carbonsäuren	Wiederholung: Säuren, saure Lösung Fakultativ: Titration

Eigenschaften und			
Verwendungen Alkohol im menschlichen Körper			
 Aufbau und Funktion eines Gaschromatographen Wirkungsweise und Abbau von Alkohol im Körper Berechnung des Blutalkohols 	erläutern die Grundlagen der Entstehung eines Gaschromatogramms und entnehmen diesem Informationen zur Identifizierung eines Stoffes (E5). nutzen angeleitet und selbständig chemiespezifische Tabellen und Nachschlagewerke zur Planung und Auswertung von Experimenten und zur Ermittlung von Stoffeigenschaften. (K2). beschreiben Zusammenhänge zwischen Vorkommen, Verwendung und Eigenschaften wichtiger Vertreter der Stoffklassen der Alkohole, Aldehyde, Ketone, Carbonsäuren (UF2).	Gaschromatographie Animation "virtueller Gaschromatograph" Gruppenarbeit Erstellen eines Gutachtens "Methanolvergiftung jugendlicher Urlauber"	
Stoffklasse der Ester Inuktionelle Gruppen Stoffeigenschaften Struktur- Eigenschaftsbeziehungen Estersynthese Vergleich der Löslichkeiten der Edukte (Alkanol, Carbonsäure) und Produkte (Ester, Wasser) Veresterung als unvollständige Reaktion Esterhydrolyse Verwendung von Estern als Aromastoffe (z.B. als Backaroma)	ordnen Veresterungsreaktionen dem Reaktionstyp der Kondensationsreaktion begründet zu (UF1). führen qualitative Versuche unter vorgegebener Fragestellung durch und protokollieren die Beobachtungen (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen) (E2, E4). zeigen Vor- und Nachteile ausgewählter Produkte des Alltags (u.a. Aromastoffe, Alkohole) und ihrer Anwendung auf, gewichten diese und beziehen begründet Stellung zu deren Einsatz (B1, B2). analysieren Aussagen zu Produkten der organischen Chemie (u.a. aus der Wer-bung) im Hinblick auf ihren chemischen Sachverhalt und korrigieren unzutreffende Aussagen sachlich fundiert (K4).	Demonstrationsexperiment (fakultativ) Synthese von Essigsäureethylester und Analyse der Produkte Schülerexperimente (gruppenteilig) Synthese verschiedener Aromastoffe (z.B. Fruchtester) Gruppenarbeit Darstellung der Edukte und Produkte der Estersynthese mit Molekülbaukasten Demonstrationsexperiment oder Schülerversuch Hydrolyse eines Esters und Analyse der Produkte	Fakultativ: Fächerübergreif-end (Biologie) Kondensation von Aminosäuren zu Polypeptiden
Chem. Gleichgewicht Einstellung von chem. GG am Modell Prinzip von Le- Chatelier MWG	beschreiben und erläutern das chemische Gleichgewicht mithilfe von Modellen (E6) erläutern die Merkmale eines chemischen Gleichgewichtszustands an ausgewählten Beispielen (UF1) erläutern an ausgewählten Reaktionen die Beeinflussung der Gleichgewichtslage durch eine Konzentrati-	Modellexperiment (Schüler) zur Einstellung eines chemischen Gleichgewichts: z.B. Stech-Hebe-Versuch Stationenlernen zur Beeinflussung von chemischen Gleichgewichten nach Le Chatelier (fakultativ mit Schüler- und/oder Demoexperiment) -Konzentration -Temperatur - Druck	Einführung mit Bezug zur Estersynthese Fakultativ:

	onsänderung (bzw. Stoffmengenänderung), Temperaturänderung (bzw. Zufuhr oder Entzug von Wärme) und Druckänderung (bzw. Volumenänderung) (UF3) formulieren für ausgewählte Gleichgewichtsreaktionen das Massenwirkungsgesetz (UF3) interpretieren Gleichgewichtskonstanten in Bezug auf die Gleichgewichtslage (UF4)		MWG:	"Tüten-Zug- Modell" Bestimmung der Lage eines chem. GG. Berechnung an aus-gewählten Bsp.
Zusammenfassung Eigenschaften, Strukturen und Verwendungen organischer Stoffe	recherchieren angeleitet und unter vorgegebenen Fragestellungen die Eigenschaften und Verwendungen ausgewählter Stoffe und präsentieren die Rechercheergebnisse adressatengerecht (K2, K3). beschreiben Zusammenhänge zwischen Vorkommen, Verwendung und Eigenschaften wichtiger Vertreter der Stoffklassen der Alkohole, Aldehyde, Ketone, Carbonsäuren und Ester (UF2).	Recherche und Präsentation Mögliche Themen: Lösemittel für Klebstoffe und Lacke;Aromastoffe und Riechvorgang; Antioxidantien und Konservierungsstoffe; Sekundäre Pflanzenstoffe; "Künstliche" und "natürliche" Aromen Fakultativ - Concept-Map "Stoffklassen" zur Verdeutlichung der Zusammenhänge zwischen den behandelten Stoffklassen		
Fakultativ: Herstellung eines Parfums Duftpyramide Duftkreis Extraktionsverfahren	- führen qualitative Versuche unter vorgegebener Fragestellung durch und protokollieren die Beobachtungen (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen) (E2, E4).	Filmausschnitt "Das Parfüm"	Fakultati Besuch	iv der Firma Silesia

2.1.2 Einführungsphase - Unterrichtsvorhaben II

Kontext: Der Kohlenstoffkreislauf und das Klima – Die Bedeutung der Ozeane

Basiskonzepte (Schwerpunkt):

Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht

Schwerpunkte übergeordneter Kompetenzerwartungen:

Kompetenzbereich Erkenntnisgewinnung:

UF1-3.

Kompetenzbereich Kommunikation:

• E1-7

Kompetenzbereich Kommunikation:

• K1-3

Kompetenzbereich Bewertung:

B 3-4

Inhaltsfeld: Kohlenstoffverbindungen und Gleichgewichtsreaktionen

Inhaltliche Schwerpunkte:

- Kohlenstoffdioxid
- Löslichkeit von CO2 in Wasser
- Ozean und Gleichgewichte
- Auf- und Abbau von Korallenriffen und Tropfsteinhöhlen
- Klimawandel
- Kalkentfernung im Haushalt

Zeitbedarf: ca. 38 Std. à 45 Minuten

Klausur: 2x45 Minuten (inhaltliche Schwerpunkte wählbar aus UV II und UV III – in Abhängigkeit des Unterrichtsverlauf bis zum festgesetzten Klausurtermin)

Unterrichtsvorhaben II

- Neue Materialien

		ngsweisen in Natur, Industrie und Hausha	ılt.	
Inhaltsfeld: Kohlens	stoff(verbindungen) und Gleichgewic	chtsreaktionen		
Inhaltliche Schwerpunkte: Stoffkreislauf in der Natur Gleichgewichtsreaktionen Zeitbedarf: 38 Std. à 45 Minuten		Schwerpunkte übergeordneter Kompetenzerwartungen:		
		 E2 Wahrnehmung und Messung E3 Hypothesen E4 Untersuchungen und Experimente E5 Auswertung E6 Modelle E7 Arbeits- und Denkweisen K1 Dokumentation K2 Recherche K3 Präsentation B3 Werte und Normen B4 Möglichkeiten und Grenzen Basiskonzepte (Schwerpunkt): Basiskonzept Struktur – Eigenschaft Basiskonzept Chemisches Gleichgewicht		
Sequenzierung inhaltlicher Aspekte	Konkretisierte Kompetenzerwartungen des Kernlehrplans Die Schülerinnen und Schüler	Lehrmittel/ Materialien/ Methoden	Verbindliche Absprachen Didaktisch-methodische Anmerkungen	
Modifikationen des Kohlenstoffs: Graphit, Diamant und mehr - Modifikation - Elektronenpaar-bindung - Strukturformeln - Intermolekulare Wechselwirkungen	nutzen bekannte Atom- und Bindungsmodelle zur Beschreibung organischer Moleküle und Kohlenstoffmodifikationen (E6). stellen anhand von Strukturformeln Vermutungen zu Eigenschaften ausgewählter Stoffe auf und schlagen geeignete Experimente zur Überprüfung vor (E3). erläutern Grenzen der ihnen bekannten Bindungsmodelle (E7). beschreiben die Struktur von Diamant und Graphit und vergleichen diese mit neuen Materialien aus Kohlenstoff (u.a. Fullerene) (UF4).	Gruppenarbeit (altenativ: Gruppenpuzzle) "Graphit, Diamant und Fullerene"	Der Einstieg dient zur Angleichung der Kenntnisse zur Bindungslehre, ggf. muss Zusatzmaterial zur Verfügung gestellt werden. Beim Graphit und beim Fulleren werden die Grenzen der einfachen Bindungsmodelle deutlich. Lokalisierte Elektronenpaarbindung (ohne Hybridisierung)	
EXKURS: Nanomaterialien - Nanotechnologie	recherchieren angeleitet und unter vorgegebenen Fragestellungen Eigenschaften und Verwendungen	Recherche zu neuen Materialien aus Kohlenstoff und Problemen der Nanotechnologie	Unter vorgegebenen Rechercheaufträgen können	

die Schülerinnen und Schüler

- Anwendungen - Risiken	ausgewählter Stoffe und präsentieren die Rechercheergebnisse adressatengerecht (K2, K3). stellen neue Materialien aus Kohlenstoff vor und beschreiben deren Eigenschaften (K3). bewerten an einem Beispiel Chancen und Risiken der Nanotechnologie (B4).	(z.B. Kohlenstoff-Nanotubes in Verbundmaterialien zur Verbesserung der elektrischen Leitfähigkeit in Kunststoffen) - Aufbau - Herstellung - Verwendung - Risiken - Besonderheiten 2. Präsentation (Poster - Museumsgang) Die Präsentation ist nicht auf Materialien aus Kohlenstoff beschränkt.	selbstständig Fragestellungen entwickeln. (Niveaudifferenzierung, individuelle Förderung) → elektronische Medien (ggf. Internetrecherche) Die Schülerinnen und Schüler erstellen Lernplakate in Gruppen, beim Museumsgang hält jeder / jede einen Kurzvortrag.
Kohlenstoffdioxid - Eigenschaften - Treibhauseffekt - Anthropogene Emissionen - Reaktionsgleichungen - Umgang mit Größengleichungen	unterscheiden zwischen dem natürlichen und dem anthropogen erzeugten Treibhauseffekt und beschreiben ausgewählte Ursachen und ihre Folgen (E1).	Brainstorming und Mindmapping zum Thema Kohlenstoffdioxid Information Eigenschaften / Treibhauseffekt z.B. Zeitungsartikel Berechnungen zur Bildung von CO ₂ aus Kohle und Treibstoffen (Alkane) - Aufstellen von Reaktionsgleichungen - Berechnung des gebildeten CO ₂ s - Vergleich mit rechtlichen Vorgaben - weltweite CO ₂ -Emissionen Information Aufnahme von CO ₂ u.a. durch die Ozeane	Der Einstieg dient zur Anknüpfung an die Vorkenntnisse aus der SI und anderen Fächern Implizite Wiederholung: Stoffmenge n, Masse m und molare Masse M, molares Volumen
Löslichkeit von CO2 in Wasser - qualitativ - Bildung einer sauren Lösung - quantitativ - Unvollständigkeit der Reaktion - Umkehrbarkeit	führen qualitative Versuche unter vorgegebener Fragestellung durch und protokollieren die Beobachtungen (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen) (E2, E4). dokumentieren Experimente in angemessener Fachsprache (u.a. zur Untersuchung der Eigenschaften organischer Verbindungen, zur Einstellung einer Gleichgewichtsreaktion, zu Stoffen und Reaktionen eines natürlichen Kreislaufes) (K1). nutzen angeleitet und selbstständig chemiespezifische Tabellen und Nachschlagewerke zur Planung und Auswertung von Experimenten und zur Ermittlung von Stoffeigenschaften (K2).	Schülerexperiment: Löslichkeit von CO ₂ in Wasser (qualitativ) Aufstellen von Reaktionsgleichungen Lehrervortrag: Löslichkeit von CO ₂ (quantitativ): - Löslichkeit von CO ₂ in g/l - Berechnung der zu erwartenden Oxon-iumionen - Konzentration - Nutzung einer Tabelle zum erwarteten pH-Wert - Vergleich mit dem tatsächlichen pH-Wert Ergebnis: Unvollständigkeit der ablaufenden Reaktion Lehrer-Experiment: Löslichkeit von CO ₂ bei Zugabe von Salzsäure bzw. Natronlauge Ergebnis: Umkehrbarkeit / Reversibilität der Reaktion	Wiederholung der Stoffmengenkonzen-tration c Wiederholung: Kriterien für Versuchsprotokolle Vorgabe einer Tabelle zum Zusammenhang von pH-Wert und Oxoniumionenkonzentration

One are and Oleigh mondals	formalism the share and Desirely	Wil-dark shares 00 Aufushas in day Massac	Assessment of the Driver'
Ozean und Gleichgewichte - Aufnahme CO ₂	formulieren Hypothesen zur Beeinflussung natürlicher Stoffkreisläufe (u.a. Kohlenstoffdioxid-Carbonat-Kreislauf)	Wiederholung: CO ₂ - Aufnahme in den Meeren	Anwendung des Prinzips von Le Chatelier
- Einfluss der	(E3).		
Bedingungen der			Fakultativ:
Ozeane auf die Löslichkeit von CO ₂	erläutern an ausgewählten Reaktionen die Beeinflussung der Gleichgewichtslage durch eine	Schülerexperimente: Einfluss von Druck und Temperatur auf die Löslichkeit von CO ₂	 Anwendung MWG auf CO₂ Gleich-gewicht
- Prinzip von Le Chatelier	Konzentrationsänderung (bzw. Stoffmengenänderung),	ggf. Einfluss des Salzgehalts auf die Löslichkeit	Gleich-gewicht
- Kreisläufe	Temperaturänderung (bzw. Zufuhr oder Entzug von	ggi. Elimado dos dalegoriano dal dio Essiloninon	
	Wärme) und Druckänderung (bzw. Volumenänderung)		
	(UF3).	Erarbeitung: Wo verbleibt das CO ₂ im Ozean?	
	formulieren Fragestellungen zum Problem des Verbleibs		
	und des Einflusses anthropogen erzeugten	Arbeitsblatt: Graphische Darstellung des marinen Kohlenstoffdioxid-	
	Kohlenstoffdioxids (u.a. im Meer) unter Einbezug von	Kreislaufs	Fakultativ:
	Gleichgewichten (E1).		Physikalische/Biologische
	veranschaulichen chemische Reaktionen zum		Kohlenstoffpumpe
	Kohlenstoffdioxid-Carbonat-Kreislauf grafisch oder durch Symbole (K3).		
Auf- und Abbau von	formulieren Hypothesen zur Beeinflussung natürlicher	Schülerexperiment:	Fakultativ:
Korallenriffen und Tropfsteinhöhlen	Stoffkreisläufe (u.a. Kohlenstoffdioxid-Carbonat-Kreislauf) (E3).	Entfernung von CO₂ aus wässrigen Lösungen als schwerlösliche Verbindung	Kalkbildung und -entfernung im Haushalt
Tropistellillomen	(LU).	Auflösen von Carbonaten/Hydrogencarbonaten in sauren Lösungen	-entierriung im Haushait
	erläutern anhand des CO ₂ -Gleichgewichts die	, ,	
	Beeinflussung der Gleichgewichtslage durch eine pH- Wertänderung (Konzentrationsänderung bzw.		
	Wertänderung (Konzentrationsänderung bzw. Stoffmengenänderung) - (UF3).		
	S, , ,		
Klimawandel	recherchieren Informationen (u.a. zum Kohlenstoffdioxid-	Recherche	
- Informationen in den Medien	Carbonat-Kreislauf) aus unterschiedlichen Quellen und strukturieren und hinterfragen die Aussagen der	 Historische & aktuelle Entwicklungen (z.B.: Versauerung der Meere, Einfluss auf den 	
- Möglichkeiten zur	Informationen (K2, K4).	Golfstrom/Nordatlantikstrom)	
Lösung des CO ₂ -			
Problems	beschreiben die Vorläufigkeit der Aussagen von Prognosen zum Klimawandel (E7).	Podiumsdiskussion	
	Zum Militawander (E1).	- Prognosen	
	beschreiben und bewerten die gesellschaftliche Relevanz	- Vorschläge zu Reduzierung von Emissionen	
	prognostizierter Folgen des anthropogenen Treibhaus-	- Verwendung von CO ₂ (z.B.: vom Abfallstoff zum Wertstoff)	
	effektes (B3).		
	zeigen Möglichkeiten und Chancen der Verminderung des	Zusammenfassung: z.B. Film "Treibhaus Erde" aus der Reihe "Total	
	Kohlenstoffdioxidausstoßes und der Speicherung des	Phänomenal" des SWR	
	Kohlenstoffdioxids auf und beziehen politische und gesellschaftliche Argumente und ethische		
	Maßstäbe in ihre Bewertung ein (B3, B4).	Weitere Recherchen	
Kalkentfernung im Haushalt	erläutern den Ablauf einer chemischen Reaktion unter	Schülerexperiment:	
- Reaktion von	dem Aspekt der Geschwindigkeit und definieren die Reaktionsgeschwindigkeit als Differenzen-quotient Δc/Δt	Reaktionen von Kalk mit Säuren	
i Controll VOII	realising coordinate great als Differenzen-quellent 40/4t		

-	Reaktionsgeschwindigk	(UF1)	Quantitative Erfassung des Reaktionsverlaufs	Berechnung von
	eit			Reaktionsgeschwindigkeite
-	RGT Regel	interpretieren den zeitlichen Ablauf chemischer Reaktionen	Stationenlernen (Fakultativ):	n
-	Kollisionstheorie	in Abhängigkeit von verschiedenen Parametern (u.a.	Analyse und Untersuchung der Wirksamkeit gängiger	
-	Geschwindigkeitsgesetz	Oberfläche, Konzentration, Temperatur) (E5)	Haushaltsreiniger mit spezieller Kalkentfernungsfunktion	Beeinflussung von
	t			Reaktionsgeschwindigkeite
-	Energetische	planen quantitative Versuche, führen diese zielgerichtet		n
	Betrachtung	durch und dokumentieren Beobachtungen und Ergebnisse		durch die Para-meter
	3	(E2, E4),	Energetische Betrachtung ausgewählter Reaktionen und	Konzentration, Temperatur
			Erstellung von Reaktionsdiagrammen	(RGT-Regel) und
		formulieren Hypothesen zum Einfluss verschiedener		Zerteilungsgrad
		Faktoren auf die Reaktionsgeschwindigkeit und entwickeln		
		Versuche zu deren Überprüfung (E3)		Kollisionshypothese
		7 0.000.10 20 00.01. 000.p. 0.01.g (20)		
		erklären den zeitlichen Ablauf chemischer Reaktionen auf		fakultativ:
		der Basis einfacher Modelle auf molekularer Ebene (u.a.		Geschwindigkeitsgesetz für
		Stoßtheorie für Gase) (E6)		bimolekulare Reaktionen
		Clossification and Case) (ES)		billiolokularo reaktionen
		stellen für Reaktionen zur Untersuchung der		
		Reaktionsgeschwindigkeit den Stoffumsatz in Abhängigkeit		
		von der Zeit tabellarisch und graphisch dar (K1)		
		von der Zeit tabellansch und graphilsch dar (KT)		
		beschreiben und beurteilen Chancen und Grenzen der		
		Beeinflussung der Reaktionsgeschwindigkeit und des che-		
		mischen Gleichgewichts (B1).		
		intermediane de distributo Francis B. 10		
		interpretieren ein einfaches Energie-Reaktionsweg-		
		Diagramm (E5, K3),		

Anhang

Unterichtsvorhaben II "Nanomaterialen"

Beispielhafte Hinweise zu weiterführenden Informationen:

Eine Gruppenarbeit zu Diamant, Graphit und Fullerene findet man auf den Internetseiten der Eidgenössischen Technischen Hochschule Zürich:

http://www.educ.ethz.ch/unt/um/che/ab/graphit_diamant,

Zum Thema Nanotechnologie sind zahlreiche Materialien und Informationen veröffentlicht worden, z.B.:

FCI, Informationsserie Wunderwelt der Nanomaterialien (inkl. DVD und Experimente)

Klaus Müllen, Graphen aus dem Chemielabor, in: Spektrum der Wissenschaft 8/12

Sebastian Witte, Die magische Substanz, GEO kompakt Nr. 31

http://www.nanopartikel.info/cms

http://www.wissenschaft-online.de/artikel/855091

http://www.wissenschaft-schulen.de/alias/material/nanotechnologie/1191771

<u>Unterrichtsvorhaben II " Der CO₂-Kreislauf – Bedeutung für Klima und Ozeane"</u>

Beispielhafte Hinweise zu weiterführenden Informationen:

Ausführliche Hintergrundinformationen und experimentelle Vorschläge zur Aufnahme von CO2 in den Ozeanen findet man z.B. unter:

http://systemerde.ipn.uni-kiel.de/materialien Sek2 2.html

ftp://ftp.rz.uni-kiel.de/pub/ipn/SystemErde/09 Begleittext oL.pdf

Die Max-Planck-Gesellschaft stellt in einigen Heften aktuelle Forschung zum Thema Kohlenstoffdioxid und Klima vor:

http://www.maxwissen.de/Fachwissen/show/0/Heft/Kohlenstoffkreislauf.html

http://www.maxwissen.de//Fachwissen/show/0/Heft/Klimarekonstruktion

http://www.maxwissen.de/Fachwissen/show/0/Heft/Klimamodelle.html

Informationen zum Film "Treibhaus Erde":

http://www.planet-schule.de/wissenspool/total-phaenomenal/inhalt/sendungen/treibhaus-erde.html

Lehrer-Experiment: Löslichkeit von CO₂ bei Zugabe von Salzsäure bzw. Natronlauge

Ergebnis: Umkehrbarkeit / Reversibilität der Reaktion